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The one-dimensional dynamics of a dimer consisting of two harmonically coupled components is consid-
ered. The mutual distance between the dimer components plays the role of an internal degree of freedom. Both
components are in contact with the same heat bath and are coupled to a spatially periodic, symmetric potential,
whose amplitude is modulated periodically in time and whose coupling strength is different for the two
components. In the absence of any external bias, a ratchet effect �directed transport� arises generically unless
the mutual coupling of the dimer components tends to zero or infinity. In other words, the ratchet effect is
generated by the internal degree of freedom. An accurate analytical approximation for the dimer’s velocity and
diffusion coefficient is obtained. The velocity of the system is maximized by adding an optimal amount of
noise and by tuning the driving frequency to an optimal value. Furthermore, there exists an optimal coupling
strength at which the velocity is the largest.
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I. INTRODUCTION

Theoretical studies of coupled Brownian particles in peri-
odic structures are of great importance in many research ar-
eas, such as molecular motors �1�, diffusion of adsorbed at-
oms on a surface �2,3�, physics of polymers �4�, ferrofluids
�5�, colloids �6�, to name but a few. It is well-known �see
�7–11� for a review� that in the absence of thermal equilib-
rium a so-called ratchet effect �directed transport� may arise
either for a finite number of particles in asymmetric struc-
tures or for an infinite number of interacting particles �ther-
modynamic limit� even in symmetric potentials, namely by
way of spontaneous symmetry breaking.

In the present work, we address the case of two interact-
ing particles in a spatially symmetric, periodic potential, rel-
evant for the diffusion of a dimer on a crystal surface and in
many other physical contexts. A further motivation is that,
based on the experimental studies �12�, it has been suggested
that the mechanism responsible for the symmetry breaking in
molecular motors may be related to their own internal struc-
ture rather than their environment. That is, one can achieve
symmetry breaking by making use of the internal degree of
freedom—the relative distance between the dimer
components—by either periodically modulating the interac-
tion parameters of the Brownian particles �13�, or by apply-
ing different forcings to different components of the dimer
�14�.

We note that a ratchet effect is also possible in a symmet-
ric structure when there is no internal degree of freedom, but
the heights of different potential barriers are modulated indi-
vidually at different frequencies �15�. However, experimen-
tally, such a dynamic symmetry breaking due to individual
modulation of the energy barriers or dimer components may
be more difficult to realize than to globally modulate the
potential for all components.

In this paper, we introduce a simple model, where a trans-
port effect occurs in a system of two interacting Brownian
particles. In contrast to the numerous previous studies of
such dimers e.g., in Refs. �16–24�, we consider the case

where the flashing potential has inversion symmetry at all
times. The essential feature of our model is that different
components of the system feel potentials of the same shape
but different amplitudes. Experimentally, this can be real-
ized, e.g., in the system of two dissimilar atoms, such as Si
and Ge, adsorbed on a surface �2�. In what follows, we in-
troduce the model and find an accurate analytical approxima-
tion for the velocity and diffusion coefficient. We show that
the ratchet effect is caused by the internal degree of freedom
in such a dimer. Furthermore, we show that the velocity of
the system is maximal at an optimal coupling strength, and
that it can be maximized also with respect to the noise inten-
sity and frequency.

II. MODEL

We consider two overdamped coupled Brownian particles
in symmetric synchronously flashing potentials �see Fig. 1�.
The equations of motion for the coordinates x1 ,x2 of the
particles are

�ẋ1 = − V��x1�f�t� − ��x1 − x2 + l0� + �2�kBT�1�t� , �1�

�ẋ2 = − �V��x2�f�t� + ��x1 − x2 + l0� + �2�kBT�2�t� , �2�

with � the viscous friction coefficient, kBT the thermal en-
ergy, and �i�t� independent and unbiased Gaussian noises
with �-correlation ��i�t�� j�s��=�ij��t−s�. The periodic poten-
tial for the first particle is a harmonic function with ampli-
tude �V and spatial period L,

FIG. 1. Schematic representation of the model.
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V�x� =
�V

2
�1 − cos�2�x/L�� �3�

and the parameter ��1 in Eq. �2� yields the amplitude of the
potential felt by the second particle, ��V. Both potentials are
periodically switched on and off by a rectangular signal
f�t�= f�t+	� of periodicity 	=	on+	off consisting of on-
phases of duration 	on, such that f�t�=1 for k	
 t�k	+	on,
and off-phases of duration 	off, such that f�t�=0 for k	+	on

 t� �k+1�	, where k�Z. For simplicity, we assume the
interaction between the two components to be elastic, with
spring constant � and rest length l0.

Our goal is to evaluate the average velocity

v = lim
t→�

�xi�t��/t �4�

and the diffusion coefficient

D = lim
t→�

Š�xi�t� − �xi�t���2
‹/�2t� �5�

of the system, which are independent of the index i=1,2 for
positive �.

III. ORIGIN OF SYMMETRY BREAKING

As we will show below, the model �Eqs. �1� and �2��
exhibits a ratchet effect, i.e., a nonzero velocity in the ab-
sence of any external forcing. This effect in our model is
caused by the internal degree of freedom. This is so because
the current is zero when the internal degree of freedom is
absent. This is realized in two opposite extremes of zero
coupling, when the two components are independent of each
other, and rigid coupling, when the dimer behaves as a single
entity.

Indeed, in the uncoupled case, �=0, each of the two par-
ticles in Eqs. �1� and �2� finds itself in the flashing sinusoidal
potential, where no current is possible for symmetry reasons.
On the other hand, in the opposite rigid limit, x2−x1= l0, it is
convenient to consider the equation of motion for the geo-
metric center and the relative coordinate,

X = �x1 + x2�/2,

Y = x2 − x1 − l0. �6�

By properly adding and subtracting Eqs. �1� and �2� one
readily finds that

�Ẋ = −
1

2
�V�	X −

Y + l0

2

 + �V�	X +

Y + l0

2

� f�t�

+ ��kBT�X�t� , �7�

�Ẏ = − ��V�	X +
Y + l0

2

 − V�	X −

Y + l0

2

� f�t� − 2�Y

+ �4�kBT�Y�t� , �8�

where �X�t�, �Y�t� are again independent, unbiased,
�-correlated Gaussian noises. In the extreme case of rigid
coupling, the distance between dimer components is fixed,

Y =0, so that from Eq. �7� one concludes that the geometric
center finds itself in the potential �V�X− l0 /2�+�V�X
+ l0 /2��f�t� /2. Since, according to Eq. �3�, V�x� is a trigono-
metric function containing a single wavelength, the resulting
potential for X is also proportional to cos�2�X /L+
� with
some phase 
, i.e., a spatially symmetric, periodic potential,
again excluding any possibility of current in the system.

In order to understand how the internal degree of freedom
leads to the onset of the directed current, it is instructive to
study the dynamics of the system in the asymptotic limit of
large but finite stiffness �. In this case, the dynamics of the
relative coordinate Y occurs on a much faster time scale than
that of the geometric center X. If the characteristic time scale
of change of the geometric center is much longer than the
thermalization time scale for the relative coordinate Y, one
can replace the X- and Y-dependent potential energy for the
geometric center with the potential averaged with respect to
the fast relative coordinate. This is done with the help of the
unnormalized probability distribution of the relative coordi-
nate Y at a fixed value of X:

��Y ;X� = e−��Y2/2+V�X−Y+l0/2�+�V�X+Y+l0/2��/kBT. �9�

The slow coordinate X finds itself in a mean-field potential of
the free-energy type

Veff�X� = −
1

2
kBT ln�

−�

�

dY��Y ;X� . �10�

Figure 2 shows this effective potential for several values of
the coupling constant, �. It is seen that at high values of �,
the effective potential indeed represents a symmetric func-
tion prohibiting spontaneous currents, while reduction of �
leads to two effects: reduction of the potential amplitude and
the onset of its asymmetry, allowing for the ratchet effect in
the system.

In conclusion, the main origin of the ratchet effect is an
internal degree of freedom of nontrivial character, i.e., an
interaction between the components of the dimer which is
neither asymptotically weak nor asymptotically strong. In
passing we note that for more general, symmetric potentials

FIG. 2. Effective potential �10� for the following parameter val-
ues in Eq. �3�: V0=100, L=1, �=0.5, kBT=1, and five values of �
from 1000 �upper curve� to 50 �lower curve�, as indicated.
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than in Eq. �3�, a finite effect would generically survive even
in the limit of rigidly coupled dimer components, thus justi-
fying a posteriori our focus on the particularly interesting
special case from Eq. �3�.

IV. ANALYTICAL APPROXIMATIONS

For an analytical evaluation of v and D from Eqs. �4� and
�5�, we assume a distinct inequality of amplitudes and deep
potential wells for particle 1, i.e.,

�V � kBT, � � 1. �11�

When the potentials are switched on, coordinate x1 will im-
mediately relax to the nearest minimum of the potential
V�x1� almost independently of x2. If we suitably move the
origin of the x axis by integer multiples of L, we can always
accomplish x1 to be located in the interval between −L /2 and
L /2, where V�x1� is minimal at x1=0, thus rendering a
straightforward harmonic approximation possible.

Our second assumption is that the on-phase of the driving
is long enough to allow for the thermalization of the system,
i.e.,

	on � 	rel, �12�

where 	rel represents the characteristic relaxation time. In
view of the condition �11�, this quantity is essentially equal
to the characteristic relaxation time of particle 2 in the po-
tential

Von�x2�: = �V�x2� + ��x2 − l0�2/2, �13�

i.e., the remaining potential after particle 1 has reached one
of its local minima at an integer multiple of L.

Under the assumptions �11� and �12�, the joint probability
distribution in the end of the on-phase is

Won�x1,x2� = Cone−1/kBT�V��0�/2x1
2+�V�x2�+�/2�x1 − x2 + l0�2�,

�14�

where Con is a normalization constant. This probability dis-
tribution can be transformed to the center-of-mass probabil-
ity distribution by integrating out the xi to Won�X�
=
dx1
dx2 ��X− �x1+x2� /2�Won�x1 ,x2�. The expression for
the distribution Won�Y� of the relative coordinate in the end
of the on-phase is the same, but with Y + �x1−x2+ l0� as an
argument in the delta function.

In the off-phase, f�t�=0, the equations of motion for the
geometric center, Eq. �7�, and the relative coordinate, Eq. �8�,
describe Wiener and Ornstein-Uhlenbeck processes, respec-
tively. Using the corresponding transition probabilities, the
center-of-mass probability distribution in the end of the off-
phase can be expressed as

Woff�X� = CX
off� dX0e−��X − X0�2/2	offkBTWon�X0� , �15�

CX
off being a normalization constant. In the same manner, we

find the distribution of the relative coordinate in the end of
the off-phase,

Woff�Y�

= CY
off� dY0e−��Y − Y0e−2�	off/��2/�2kBT�1−e−4�	off/���Won�Y0� ,

�16�

with the respective normalization constant CY
off.

At the beginning of the next on-phase, x1 may either drop
back into the same potential well where it was one period
ago or fall into a neighboring well, with the respective prob-
abilities depending on the properties of

Woff�x1� =� dX� dY �	x1 − X +
Y + l0

2

Woff�X�Woff�Y� .

�17�

This enables us to calculate the probability to find particle 1
between the kth and the �k+1�th maximum �i.e., within the
basin of attraction of the minimum at kL� by

wk = �
�k−1/2�L

�k+1/2�L

dx1Woff�x1� , �18�

resulting in the average velocity

v =
L

	
�

k=−�

�

kwk �19�

and diffusion coefficient

D =
L2

2	
�

k=−�

�

k2wk −
v2	

2
. �20�

V. RESULTS AND DISCUSSION

In the following, we present a comparison of simulation
data from the Langevin equations �1� and �2� with numerical
results from our theory according to Eqs. �19� and �20�. We
have chosen the following constant parameter values: �=L
=1, �V=100, and �=0.05, so that conditions �11� are guar-
anteed throughout. Successively, four parameters were var-
ied: rest length, l0, thermal energy, kBT, switching frequency,
�, and coupling strength, �. Simulation data represent aver-
ages over 15 trajectories for velocities and over 200 for dif-
fusion coefficients, where each single trajectory covers a
time span of 1.25�104 dimensionless time units. All simu-
lations are performed for the duty cycle 	on /	=1 /2 �i.e.,
	on=	off�.

A. Dependence on dimer length l0

The inherent mirror symmetry of the Langevin equations
�1� and �2� implies that the current is an odd function of the
dimer length l0. As translational symmetry of the periodic
potential V�x� permits shifts by integer multiples of period L,
we recognize this symmetry to be valid for all integers k
according to v�l0�=v�kL+ l0�=−v�kL− l0�. This means that
for all l0=kL /2 the net current must vanish, v�kL /2�=0.
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Regarding the sign of the current, it depends on the char-
acter of dimer’s deformation during the on-phase. If the
dimer was squeezed, then after turning the potentials off, the
first particle will be more likely to move to the left of its
original position. Consequently, it will diffuse into the left
minimum with greater probability than into the right one,
and will be trapped there in the next on-phase. Since the
character of the potential �13� is such that the dimer is
squeezed for kL� l0� �k+1 /2�L, k�Z, the overall velocity
will be negative in this case. Following an analogous line of
reasoning, we conclude that the velocity will be positive for
�k+1 /2�L� l0� �k+1�L.

Both features, current reversal and symmetry, are shown
in Fig. 3 for dimer lengths l0 within the interval from 0 to L.
At low switching frequency ��=2� /	=10�, the coincidence
of theory and simulation is unequivocal. Current reversal ap-
pears at l0 equal to integer multiples of L /2, as explained
above. In each node, the average velocity is an odd function
of the dimer length. This qualitative behavior is not impaired
by higher frequencies, as is also shown in this figure. For
growing frequency, the exact probability distribution will in-
creasingly deviate from the stationary Boltzmann distribu-
tion Won�x1 ,x2� given by Eq. �14�. Therefore our theoretical
prediction of the average velocity exceeds the simulation
data for ��20.

Nevertheless, even for higher frequencies, Eq. �19� very
accurately predicts the behavior of the current for l0 near all
integer multiples of L. This is so, because in this case, the
potential �13� felt by the second particle has a single mini-
mum, with the relaxation time given approximately by
	rel�l0�kL��� / ��+�V��0��, k�Z. For the parameter val-
ues chosen, this relaxation time is much smaller than the
duration of the on-phase, so the condition �12� is satisfied.
On the other hand, for l0��k+1 /2�L, the potential �13� be-
comes bistable, so that the relaxation of the coordinate x2
involves a slow process of thermally activated hopping over
the potential barrier with a substantially longer relaxation
time.

B. Temperature dependence

The temperature dependence of v reveals a good agree-
ment of simulation and theory over two orders of magnitude
of thermal energy, as does the diffusion coefficient D �Fig.
4�. The v-kBT-diagram exhibits a clear-cut maximum of the
current for an optimal amount of noise in the system. On the
one hand, if temperature becomes zero, there is no motion at
all and the current must vanish. On the other hand, if the
thermal energy exceeds all other characteristic energies of
the system, the effective potential, Eq. �10�, becomes insig-
nificant and overall symmetry is restored, thus inhibiting any
ratchet effect. In between, there must be a finite current �for
all l0�kL /2, k�Z� because at any finite value of T the dis-
tribution Woff�x1� is nonsymmetric at x1=0, leading to a non-
vanishing sum in Eq. �19�.

Turning to the dependence of the diffusion coefficient on
the thermal energy, one can distinguish three regimes. At
temperatures higher than the barrier height �V, the details of
the flashing periodic potential become immaterial, and the
diffusion coefficient asymptotically approaches the value
Dfree=kBT /2, corresponding to the free diffusion of the geo-
metric center coordinate �7�, see upper dashed line in Fig.
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0.0

0.2
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0.0 0.5 1.0
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ω = 30

FIG. 3. Average velocity v vs rest length l0 at three different
switching frequencies �=10, 20, and 30 for �=kBT=L=1, �V
=100, �=0.05, and �=50. Circles and triangles are simulation data,
solid lines show the corresponding theoretical predictions. The re-
sults are uneven periodic functions with period L. Here, only one
period �0
 l0
L� is shown. With increasing frequency, theoretical
prediction loses accuracy for l0 around L /2.
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FIG. 4. �a� Average velocity v vs thermal energy kBT for �=L
=1, �V=100, �=0.05, �=25, �=50, and l0=0.75. Solid line: ana-
lytical expression �19�; and circles: simulations. The velocity
clearly shows a maximum at kBT�1. �b� Diffusion coefficient D vs
kBT for the same parameter values as in �a�. Solid line: analytical
expression �20�; and circles: simulations. At kBT�1, D starts to
converge toward kBT /4� �dashed line�.
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4�b�. At intermediate temperatures, the diffusion of the dimer
is significant only during the off-phases, when the potential
is switched off, with the diffusion coefficient given by
Dfree	on /	=kBT /4 for duty cycle 1/2, see the lower dashed
line in Fig. 4�b�. Finally, as T→0, the decline of D is much
steeper than of Dfree due to the increasing probability of x1
returning to its starting point of the previous on-phase, cor-
responding to a “loss” of diffusion over a whole period.

C. Dependence on the switching frequency

Figure 5�a� shows the effect of the switching frequency
�=2� /	 on the average velocity of the dimer. It exhibits the
asymptotic behavior v→0 both for �→0 and for �→�.
The explanation for this is apparent: on the one hand, there
will be no net probability current for extremely long times of
free diffusion because Woff�x1� gets very flat. On the other
hand, Woff�x1� will be sharply peaked for very short times of
free diffusion so that wk�0, for k�0, generating no net
current, either. In between, there is necessarily a finite
amount of probability spreading out beyond the interval from
−L /2 to L /2, giving rise to a finite net current. This current

shows a clear-cut maximum, too, which one would call a
resonant activation in terms of escape from a metastable state
�25�. The already mentioned deviation of Won for high fre-
quencies thereby leads to a slight overestimation of the maxi-
mal current.

The diffusion coefficient �Fig. 5�b�� also converges to-
ward Dfree=kBT /4�, which in this case is Dfree=1 /4, but
here the convergence takes place in the low-frequency limit,
as it provides long times of free diffusion. In the high-
frequency limit, the time of free diffusion becomes too short
to allow for a finite current out of the potential minimum, so
that the diffusion coefficient approaches zero as �→�.

D. Dependence on elasticity �

The line of reasoning is different when it comes to the
role of the elastic coupling � �Fig. 6�. There will be an as-
ymptotically vanishing net current for �→0 and for �→�,
but this is due to the decisive role of the internal degree of
freedom, as explained in Sec. III. The internal degree of
freedom can only exist as long as � is finite, thus breaking
symmetry and inducing a ratchet effect. Similar to the cur-
rent maximization with respect to temperature and frequency,
we can distinguish an optimal value of the coupling constant
that leads to a maximal current. It is at this value of the
coupling constant that the deformation of the dimer in the
on-phase is maximal.

We shall briefly discuss the obvious inability of Eq. �19�
to give any accurate quantitative prediction of the net current
for small values of the elastic coupling constant. We see a
pronounced spread between theory and simulation for �
�30. For decreasing �, the potential Von�x2�, Eq. �13�, is
transformed to a multistable one-dimensional landscape con-
sisting of two or more relative minima. The barriers separat-
ing these minima approach a height of ��V as �→0, leading
to a thermalization time much larger than 	on. Since
Won�x1 ,x2� relies on the equilibrium distribution, it cannot
describe the actual probability distribution at the end of the
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FIG. 5. �a� Average velocity v vs switching frequency � for �
=kBT=L=1, �V=100, �=0.05, �=50, and l0=0.7. For ��40, the
theoretical prediction starts to deviate slightly from simulation data.
The reason for this is that 	 is too short to allow for a relaxation of
x2 according to Won. A resonant activationlike maximum �25� stands
out at ��40. �b� Diffusion coefficient D vs � for the same param-
eter values as in �a�.
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FIG. 6. Average velocity v vs elastic coupling � for �=kBT
=L=1, �V=100, �=0.05, �=10, and l0=0.7. For low values of �,
the assumed Boltzmann distribution Won�x1 ,x2� cannot describe the
real situation sufficiently exact, thereby predicting an exceedingly
high average current. This is due to the onset of a much slower
relaxation process taking effect at low �.

DYNAMICS OF A DIMER IN A SYMMETRIC POTENTIAL: … PHYSICAL REVIEW E 77, 031136 �2008�

031136-5



on-phase with sufficient accuracy. Consequently, the theory
does not hold for low �. For this reason, any viable theoret-
ical prediction of the diffusion coefficient depending on the
elastic coupling constant could not be made.

VI. CONCLUDING REMARKS

In this work, we have demonstrated, both analytically and
by means of numerical simulations, that an internal degree of
freedom can lead to the onset of the symmetry breaking and
to a ratchet effect in a dimer finding itself in a flashing sym-
metric potential. The current can be maximized with respect

to various system parameters describing the properties of the
potential, environment, and coupling. We expect that the ef-
fect will be also observable for other asymmetry types, e.g.,
different values of the friction coefficient of the two par-
ticles, and inclusion of additional degrees of freedom and/or
inertia should preserve the effect. Detailed studies of these
intriguing possibilities will be the subject of our future re-
search.
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